Antenna Feedline Cable Comparison

WB2LUA

Feedline Type	Loss in Db/100 ft $\mathbf{1 5 0 ~ M H z}$	Loss in DB/100 ft $\mathbf{4 5 0} \mathbf{~ M H z}$	Power Loss at $\mathbf{1 5 0 ~ M H z ~ i n ~ \% ~}$	Power Loss at $\mathbf{4 5 0} \mathbf{~ M H z ~ i n ~} \%$
RG-58	6.2	10.6	76.1	91.3
RG-8X	4.7	8.6	66.2	86.2
LMR-240	3.0	5.2	50.1	70.0
RG-8U	2.8	5.2	47.4	69.8
Belden 9913	1.5	2.8	29.1	47.4
LMR-400	1.5	2.7	29.1	46.2

Prices per 100 feet with PL259 connectors

CABLE XPERTS, CXP08XC100, 100 FT RG8X W PL259ST INSTALLED, \$54.95
CABLE XPERTS, CXP008C100, 100 FT RG-8U FOAM W PL259 INSTALLED, $\$ 119.95$
CABLE XPERTS, CXP1318FC100, 100 Foot 9913FLEX W PL259 CONNS, \$129.95
CABLE XPERTS, 400UFC100, 100 FT LMR400U W PL259 CONNECTORS- Flexible Stranded Center Conductor, \$199.95

Reference

Power Gain/Loss (db) = $10 \log ($ Pout/Pin)
$3 \mathrm{db}=0.707$ voltage radio and 0.5 power ratio
$6 \mathrm{db}=0.5$ voltage radio and 0.25 power ratio
Example:
$3 \mathrm{db}=10 \log (0.5 / 1)$, which is 50% power \log of $0.5=0.3 \times 10=3$
$6 \mathrm{db}=10 \log (0.25 / 1)$, which is 25% power \log of $0.25=0.6 \times 10=6$

Change Cable?

If one were to change from 100 feet of RG-8X to Belden 9913, there would be an increase of power by 37.1% at 150 MHz and 38.7% at 450 MHz .

Calculations

Power Gain/Loss $(\mathrm{db})=10 \log ($ Pout/Pin)
Power Gain $(\mathrm{db})=($ antilog of $($ Power Gain $(\mathrm{db}) / 10))$
Power Loss $(\mathrm{db})=1 /($ antilog of (Power Loss $(\mathrm{db}) / 10))$
Example 1: how much power will be transmitted with a 6 db loss
$1 /$ (antilog of 6/10)
1 / (antilog of 0.6)
$1 / 3.99=0.25 \times 100=25 \%$ of power transmitted
100 - power transmitted = power loss
Example 2: how much power will be transmitted with a 6 db gain
antilog of $6 / 10$
antilog of 0.6
$3.99=3.99 \times 100=399 \%$ round to 400% of power transmitted

